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Some Notes about Outliers 

Dipl.- Ing. (FH) Klaus Hoffmann, Derikumer Weg 26, Neuss, 13.01.2024 

IntroducƟon 

The intended audience of this paper are engineers, pracƟƟoners, who are not primarily staƟsƟcians 
and naturally interested readers. For this reason, this paper is based on a rather heurisƟc approach to 
make the explanaƟons easy to understand.  

The science of staƟsƟcs deals with the collecƟon, analysis, interpretaƟon and presentaƟon of data. 
EffecƟve interpretaƟon of data based on good procedures and thorough examinaƟon. The goal of 
staƟsƟcs is to gain an understanding of data. The interpretaƟon must come from the analyst and not 
only from the applied staƟsƟc soŌware. If the analyst can thoroughly grasp the basics of staƟsƟcs, the 
analysing person can be more confident in the decisions. This essay deals with the occurrence of 
outliers, a staƟsƟcal problem in which staƟsƟcal knowledge alone is insufficient to understand. [1]  

One well- known historical example for an outlier is related to the ozone hole over the 
AntarcƟca. Although conspicuous values were detected for years, the measured values were 
evaluated as obviously incorrectly measured viz. the values were interpreted as outliers and 
ignored. [2]  

One noted example for the possible effects of one single outlier is located in the field of 
economy, which is represented through the Per Capita Income (PCI) in the city of Heilbronn. This 
staƟsƟc is distorted by one single billionaire who lives there. The existence of this one individual 
causes an increase of the PCI to be the highest in Germany. [3, 4, 5] 

This paper is focused on numerical, conƟnuous- valued data interval or raƟo scales and univariate data 
sets, this means the evaluaƟon of only one characterisƟc. The arƟcle provides a conceptual overview 
of outliers with special focus on common techniques used to detect them. [29, 35] Whereat the 
detecƟng for outliers is also defined as a part of data cleaning. [33] The treaƟse does not discuss the 
outlier management techniques of deleƟon, subsƟtuƟon and transformaƟon. [29] The focus is 
restricted to elementary univariate methods to give the reader a cardinal insight of the fundamentally 
different difficulƟes, soluƟon statements and to do calculaƟons without the applicaƟon of specialised 
soŌware. This restricƟon represents also a line to the area of e.g., “machine learning” and many “data 
mining applicaƟons” which is also based on staƟsƟcal methods. [31, 35]  

This paper is oriented on giving an overview of the applicaƟons of methods, mainly categorized into 
two types: informal methods and formal methods.  

Informal Methods 

Informal methods include several outlier labelling methods on the basis of the Gaussian- distribuƟon. 
In addiƟon, robust staƟsƟcs for distribuƟons that are not normal are also briefly depicted. The most 
frequent applied techniques are the Zscore, modified Zscore, MADE, Tukey’s method (Box- Plot) and other 
graphical methods to illustrate the outlying observaƟon. [35] In addiƟon the Q-Q- Plot and the 
histogram can support the analyst by visualising whether the distribuƟon is normal and to detect 
potenƟal outliers.  

Formal Methods 

Formal methods are test- based methods. [35] This paper deals with tests on the basis of the Gaussian- 
distribuƟon. Therefore, the menƟoned formal methods require a test based on an informal method or 
a formal method to examine whether the distribuƟon is normal. The Grubb’s and the Dixon- tests to 
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detect potenƟal outliers, are described in a rather brief form. The generalized extreme studenƟzed 
deviate test (ESD- Test) will be explained in more detail.  

Outliers  

In staƟsƟcs, an outlier is a data point which does not fit to the rest of the data, it differs significantly 
from the mainstream of the other observaƟons. [1, 6, 9, 35] It is a case - or a very few cases - that 
seems to be unaƩached to the rest of the distribuƟon. [32] An outlier may be defined as an observaƟon 
in a set of data that appears to be inconsistent with the remainder of that data set. [13] It has a low 
probability that it originates from the same staƟsƟcal distribuƟon as the other observaƟons in the data 
set. [30] An outlier, which is also called an extreme value or an unusual value, may be due to a variability 
in the measurement, an indicaƟon of novel data, or it may be the result of experimental error; the 
laƩer are someƟmes excluded from the data set. [1, 6, 9] The suspicious value can be an indicaƟon of 
exciƟng possibility, but can also cause serious problems in staƟsƟcal analyses. [6, 9, 33] An analyst who 
will be confronted with outliers will be forced to decide how to handle them. Outliers can distort 
staƟsƟcal analyses and violate their assumpƟons. [9, 29] To maximize generalizability, outliers must be 
properly handled prior to data analysis regardless of the cause. Several staƟsƟcal techniques can be 
used to detect, classify, and manage outliers. The presence of an excessive number of outliers should 
raise an alarm for researchers, as it may indicate serious problems with the sampling procedures or the 
conceptual definiƟon of the populaƟon of interest. [29] Removing outliers is legiƟmate only for specific 
reasons. Outliers can occur by chance in any distribuƟon, but they can indicate novel behaviour or 
structures in the data set, measurement error, or that the populaƟon has a heavy- tailed distribuƟon. 
[9] They may also represent legiƟmate extreme cases of the target populaƟon. [29] While in the case 
of heavy- tailed distribuƟons, the data indicate that the distribuƟon has a high skewness and that one 
should be very cauƟous in using tools or intuiƟons that assume a normal distribuƟon. A frequent cause 
of outliers is a mixture of two distribuƟons, which may be two disƟnct sub- populaƟons, [6] nonnormal 
distribuƟons and unequal variances. [6, 9] It has to be noted, that it cannot be staƟsƟcally shown that 
an outlier originates from a different distribuƟon than the rest of the data. [30] Such an extreme value 
can be generated due to incidental systemaƟc error but also a flaw in the theory. [6] The reasoning 
being, a staƟsƟcal outlier is unlikely to arise by chance. Similarly, an outlying observaƟon in a process 
control environment is an important signal of a process problem; if all the outlying values were 
rejected, process control would be rendered ineffecƟve. [13]  

Note: Extreme cases that are legiƟmate outliers can have a strong impact and therefore need 
to be diagnosed and addressed. [33] Outlier detecƟon is a principal step in staƟsƟcal 
applicaƟons. [35]  

Types of Outliers  

An important aspect of an outlier detecƟon technique is the nature of the expected outlier. Outliers 
can be classified into the following three categories [23, 24]:  

- point outliers [23] or global outliers [24] 

- contextual outliers [23] or condiƟonal outliers [24] 

- collecƟve outliers [23] 

Point Outliers  

A data point is considered a global outlier if its value is far outside the enƟrety of the data set in which 
it is found. [24] This is the simplest type of outlier and is the focus of the majority of research on outlier 
detecƟon. [23] 
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Contextual Outliers  

A data point is considered a contextual outlier if its value significantly deviates from the rest of the 
data points in the same context. This means that the same value may not be considered to be an 
outlier if it occurred in a different context. [24]  

CollecƟve Outliers  

A subset of data points within a data set is considered abnormal if those values as a collecƟon deviate 
significantly from the enƟre data set, but the values of the individual data points are not themselves 
anomalous in either a contextual or global sense. [24]  

ApplicaƟons of Methods for the DetecƟng of Outliers 

Although only a basic understanding of the various methods of outlier detecƟon should be conveyed, 
the subsequent exemplary menƟoned applicaƟons should show the far- reaching importance.  

- Mobile Phone Fraud DetecƟon.  

In this acƟvity monitoring problem, the calling behaviour of each account is scanned to issue an alarm 
when an account appears to have been misused. [23] 

- Insider Trading DetecƟon  

Insider trading is a phenomenon found in stock markets, where people make illegal profits by acƟng 
on, or leaking, inside informaƟon before the informaƟon is made public. It could be knowledge about 
a pending merger or acquisiƟon, a terrorist aƩack affecƟng a parƟcular industry, a pending legislaƟon 
affecƟng a parƟcular industry. Fraud has to be detected in an online manner and as early as possible, 
to prevent people or organizaƟons from making illegal profits or criminal acƟviƟes. [23] 

- Medical and Public Health DetecƟon  

The data typically consists of paƟent records which may have several different types of features such 
as paƟent age, blood group, weight. The data might also have temporal as well as spaƟal aspect to it. 
The data can have outliers due to several reasons such as abnormal paƟent condiƟon, instrumentaƟon 
errors or recording errors. [23] 

- Industrial Damage DetecƟon  

Industrial units suffer damage due to conƟnuous usage and the normal wear, corrosion etc. Such 
damages need to be detected early to prevent further escalaƟon and losses. The data in this domain is 
usually sensor data recorded using different sensors and collected for analysis. [23] 

- Sensor Networks  

Sensor networks have lately become an important topic of research from data analysis perspecƟve, 
since the data collected from various wireless sensors has several unique characterisƟcs. Outliers in 
such data collected can either imply one or more faulty sensors, or the sensors are detecƟng events 
that are interesƟng for analysts. [23] 

Effects and Causes of Outliers 

Outliers can be very informaƟve about the subject area and data collecƟon process. It is essenƟal to 
understand how outliers occur and whether they might happen again as a normal part of the process 
or study area. It is important to resist the temptaƟon to remove outliers inappropriately. Outlying 
values generally have an appreciable influence on calculated mean values and even more influence on 
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calculated standard deviaƟons, because of its possible inflaƟon. [13, 35] Outliers increase the variability 
of the data, which decreases staƟsƟcal power and may adversely lead to model misspecificaƟon and 
biased esƟmates etc. [13, 9, 35] Consequently, excluding outliers can cause results to become 
staƟsƟcally significant. [13 ,9] Outliers lead to both Type I and Type II errors, frequently with no clue as 
to which effect, they have in a parƟcular analysis. And they can lead to results that do not generalize 
except to another sample with the same kind of outlier. [31] Deciding how to handle these values 
depends on invesƟgaƟng their underlying cause. The appropriate efforts depend on what causes the 
outliers. In broad strokes, there are five main causes for outlier data entry or measurement errors, 
sampling problems, unusual condiƟons and natural variaƟon. [13, 9]  

Data Entry and Measurement Errors 

Errors can occur during measurement [30, 6] e.g., instrument error, physical apparatus for taking 
measurements may have suffered a transient malfuncƟon. [6] The measurement systems should be 
shown to be capable for the process they measure. Outliers also come from incorrect specificaƟons 
that are based on the wrong distribuƟonal assumpƟons at the Ɵme the specificaƟons are generated. 
[30, 32] Missing- value codes in computer syntax so that missing- value indicators are read as real data. 
[32] During data entry, generally human errors can produce weird values. Unfortunately, a common 
cause of outliers - parƟcularly very extreme values - are human errors or other aberraƟon in the 
analyƟcal process. [13, 29, 32] Outliers can also arise deliberately due to fraudulent behaviour. [6] It is 
essenƟal to have an access to the original record to correct the input or even remeasure the subject to 
determine the correct value. These types of errors are easy cases to understand. If that value is not 
possible it is necessary to delete the data point because it is proven. [13]  

Sampling Problems and unusual CondiƟons 

Unfortunately, the study might accidentally obtain a subject that is not from the target populaƟon. A 
sample may have been contaminated with elements from outside the populaƟon being examined. [6] 
The subject was measured under abnormal condiƟons. Consequently, the data was excluded from the 
analyses because it was not a member of the assumed populaƟon. If the analyst can establish that a 
subject does not represent the populaƟon, the analysing person can remove that data. However, the 
analysing person must be able to aƩribute a specific cause or reason for why that sample item does 
not fit the target populaƟon. [13]  

Natural VariaƟon 

Natural variaƟon respecƟvely and natural deviaƟon in populaƟon [6] can produce outliers and it is not 
necessarily a problem. However, random chance might include extreme values in smaller data sets. 
Hence, the process or populaƟon which are studied might produce weird values naturally. There is 
nothing wrong with these data points. They are unusual, but they are a normal part of the data 
distribuƟon. Therefore, there is no jusƟfiable reason to remove that value. While it is an oddball, it 
accurately reflects the potenƟal surprises and uncertainty inherent in a system. When the analyst 
removes them, the model makes the process seem more predictable than it actually is. Even though 
this unusual observaƟon is influenƟal, it is best to leŌ it in the model. It is bad pracƟce to remove data 
points simply to produce a beƩer fiƫng model or staƟsƟcally significant results. If the extreme value is 
a legiƟmate observaƟon that is a natural part of the populaƟon the analyst is studying, the analysing 
person should be leave it in the data set. [13]  

Advices for the Removing Outliers 

SomeƟmes it is the best to keep outliers in the data set. They can represent valuable informaƟon as a 
part of the study area. [13, 30] OŌen, values that seem to be outliers are the right or leŌ tail of a skewed 
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distribuƟon. [30] Retaining these points can be hard, parƟcularly when it reduces staƟsƟcal 
significance. Excluding extreme values solely due to their extremity can distort the results by removing 
informaƟon about the variability inherent in the study area. The rejecƟon of an extreme value on 
staƟsƟcal grounds alone is not generally recommend. [13, 30] The non- consideraƟon of extreme values 
caused the subject area to appear less variable than it is in reality. When considering whether to 
remove an outlier, the analyst needs to evaluate if it appropriately reflects the target populaƟon, 
subject- area, research quesƟon, and research methodology. It has to be clarified whether anything 
unusual happen while measuring these observaƟons, such as e.g., power failures, abnormal 
experimental condiƟons, or anything else out of the norm. [13] If no root cause can be determined, 
and a retest can be jusƟfied, the potenƟal outlier should be recorded for future evaluaƟon as more 
data become available.  

If an outlier is in quesƟon: 

- In the case of a measurement error or data entry error, the correcƟon of the value has to be 
done if possible. If it is not possible to fix it, that observaƟon has to be removed. 

- If the value is not a part of the presupposed populaƟon, then it is legiƟmate to remove the 
outlier. [13, 29] (Note: It cannot be staƟsƟcally shown that an outlier originates from a different 
distribuƟon than the rest of the data.[30]) 

- In the case of a value that is a natural part of the presupposed populaƟon under study, the 
value should not be eliminated. [13] 

- Tabachnick and Fidell postulate two scenarios in which variable deleƟon is appropriate: (a) the 
variable is highly correlated with other variables or (b) the variable is not essenƟal for the 
analysis. [29] 

When it is decided to remove outliers, it is needed to document the excluded data points and explain 
the reasoning.[13] (Whereupon from some authors, removing will be seen as the most conservaƟve 
and probably the safest approach to outlier management. [29]) It is inevitable for the analyst to 
aƩribute a specific cause or causes for removing outliers. [13] Another approach is to perform the 
analysis with and without these observaƟons and discuss the differences. [13, 30] Comparing the 
results in this manner is parƟcularly useful when the analyst is unsure about removing an outlier and 
when there is substanƟal disagreement over this quesƟon. [13] If outliers do not change the results of 
the analysis, they can be retained. [29]  

General Strategies for the DetecƟng of Outliers 

As menƟoned, there are two general strategies for detecƟng of outliers. The first are the applicaƟons 
of informal approaches, the visualising staƟsƟcal methods. The second strategy the formal approaches, 
which are outlier tests. These tests are intended to idenƟfy outliers and disƟnguish them from chance 
variaƟon, allowing the analyst to inspect suspect data and if necessary correct or remove erroneous 
values. [9, 34] The analyst has to decide whether the cases that are outliers are properly part of the 
populaƟon from which you intended to sample. Cases with extreme scores, which are, nonetheless, 
apparently connected to the rest of the cases, are more likely to be a legiƟmate part of the sample. 
[32] The both strategies can also be applied in the case of applicaƟon of robust staƟsƟc tests. [9] Robust 
staƟsƟcal procedures which are not greatly affected by the presence of occasional extreme values, but 
which sƟll perform well when no outliers are present. [13]  

Note: There is no rigid mathemaƟcal definiƟon of what consƟtutes an outlier [6, 9]; 
determining whether an observaƟon is an outlier is ulƟmately a subjecƟve. [6]  

Finding outliers depends on subject- area knowledge and an insight of the data collecƟon process. 
While there is no solid mathemaƟcal definiƟon, there are guidelines, graphs viz. methods of descripƟve 
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staƟsƟcs and staƟsƟcal tests which can be used to find outlier. There are a variety of ways to find 
outliers, [9] whereat some of which are treated as synonymous with novelty detecƟon.[6] All of these 
methods employ different strategies for finding values that are unusual compared to the rest of the 
data set.  

Methodologies to detect Outliers 

SorƟng Data Sets 

SorƟng a data set to generate ranking lists for each variable is a simple but effecƟve way to highlight 
unusual values. This methodology is useful, parƟcularly when the number of data points is not too 
large. This approach does not quanƟfy the degree of abnormality of an outlier, on the other hand it will 
enable the analysing person to see the unusually high or low value at a glance. [13, 29] The ranking list 
can be supplemented by domain specific thresholds to select the most relevant suspicious value. [23]   

Graphing Data Sets 

Humans simply are incapable of processing informaƟon about lengthy numerical arrays. Graphs 
provide an effecƟve means of downplaying the details of the data and emphasizing the important 
features, the distribuƟonal shape, locaƟon, presence of unusual observaƟons, like outliers etc. 
Graphical methods greatly simplify the assessment of analyƟcal data. The use of visualising staƟsƟcal 
methods facilitates the detecƟon of outliers, because these values are characterised by a visible 
distance from the remainder of the data. [13] While illustraƟve measures such as dot plots, histograms, 
boxplots etc. provide visual indicaƟons of the presence of possible outliers, it is recommended that 
researchers corroborate these approaches with objecƟve quanƟfiable measures to ensure accurate 
outlier idenƟficaƟon. [29] On the other hand, graphs can be somewhat detrimental in some situaƟons 
because it oŌen is difficult to recover the numeric values from the visual display. In contrast, graphs 
usually are superior for revealing paƩerns, trends, and relaƟve quanƟƟes within data sets regardless of 
their size. All numerical summaries of data are based on assumpƟons about the nature of those data. 
If these assumpƟons are met, then descripƟve staƟsƟcs provide an accurate representaƟon of the data 
features. But in the extent the assumpƟons are not met, descripƟve staƟsƟcs can be inaccurate and 
misleading. Graphical presentaƟons are not nearly as reliant on such underlying assumpƟons and so 
they can be used to summarize the data without the aƩendant dangers of misrepresentaƟon. Another 
advantage is that graphical analysis facilitates greater interacƟon between the analyst and the data. 
EffecƟve visual presentaƟons highlight interesƟng and unusual aspects of the quanƟtaƟve informaƟon 
under invesƟgaƟon. This encourages the researcher to pursue these features to idenƟfy their sources 
and implicaƟons for understanding the processes that are generaƟng the data. [31]  

Histograms 

The histogram [29] which is also known as frequency distribuƟon, [34] or frequency histogram [32] is 
by far the most commonly used procedure for displaying data. A histogram is a graphical display that is 
used to demonstrate central tendency distribuƟons, the relaƟve concentraƟon or "density" of 
observaƟons. The morphology of histograms typically mimics a normal distribuƟon with a cluster of 
cases near the mean and a trail of cases heading toward both ends of the distribuƟon. [29, 32, 34] 
Many naturally occurring things have this shape of distribuƟon. [34] The data density at any specific 
locaƟon within the whole range is represented by the verƟcal height of a point. A histogram is usually 
presented as a verƟcal bar chart showing the number of observaƟons in each of a series of intervals. 
The horizontal axis is divided into segments corresponding to the intervals. Whereat intervals are oŌen 
called "bins”. On each segment a rectangle is constructed whose area is proporƟonal to the frequency 
in the group. The areas under the histogram can be interpreted as probabiliƟes such as the area 
covered by each "bar". The histogram provides a great deal of informaƟon about the distribuƟon in a 
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very concise manner. Histograms are all somewhat sensiƟve to the choice of intervals. Even relaƟvely 
small changes in start point or interval width can noƟceably change the appearance of the plot, 
especially for smaller data sets. [13] The problems stem from the arbitrary nature of the “bins” used to 
categorize the conƟnuous data values. If the y- value is small, relaƟve to the range of the data, in 
combinaƟon with narrow bins, then the histogram will follow the contours of the distribuƟon closely.  
The empirical representaƟon of the distribuƟon could be quite "bumpy." AlternaƟvely, wider bins in 
combinaƟon with larger y- values produce a smoother histogram. But they also increase the risk of 
distorƟng substanƟvely important features -like outliers- in the distribuƟon of the variable. The 
problem is that wide “bins” eliminate any possibility of showing local variaƟons in the densiƟes 
contained within the respecƟve bins. [9, 29] Most frequently histograms display no more than about 
20 bars. [33] The very use of the “bins” is a distorƟon of informaƟon because any data variability within 
the “bins” cannot be displayed in the histogram. At the same Ɵme, the discrete nature of the “bins” 
generates disconƟnuiƟes that are manifested visually in the sharp corners of the histogram bars; the 
laƩer certainly, are not an intrinsic part of the data. Histograms also emphasize the existence of outliers. 
[9, 29] The basic idea is to visualise the data distribuƟon for a single variable and find values that fall 
outside the distribuƟon. [9, 29] It is recommended that histograms be uƟlized only as a preliminary 
assessment in the search for outliers. This is because, except in extreme outlier cases, the use of 
histograms may not be definiƟve. [29]  

 

Figure 1 shows a histogram with the thiamphenicol data from [13] 

Unidimensional ScaƩerplots 

The chart below using unidimensional scaƩerplots (Figure 2) for each of four variables. Unidimensional 
scaƩerplots show clearly that the variable distribuƟons differ from each other in important and easily 
recognizable ways. For anyone confronted with the informaƟon in this graphical form, there is no 
quesƟon that the variables have divergent distribuƟons. Instead, aƩenƟon would centre on the more 
interesƟng quesƟon of why the four sets of values show such differences from each other. This brief 
example illustrates very nicely the general advantages of graphical approaches to data analysis. The 
graphs provide useful summaries for large, complicated data sets.  
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Figure 2 shows an even a cursory glance at the Figure reveals that X1 has a unimodal, 
symmetric distribuƟon, whereas the distribuƟon for X2 is symmetric but bimodal. At the same 
Ɵme, X3 distribuƟon is skewed posiƟve, whereas X4 distribuƟon is compressed to the leŌ, but 
offset by a single outlying observaƟon (Outlier) with an extremely large value. The sample 
arithmeƟc mean and standard deviaƟon are accurate summaries of the distribuƟon for X1, but 
they seriously misrepresent the other four variables.   

A unidimensional scaƩerplot simply shows each observaƟon as a point ploƩed along a scale line that 
represents the range of data values. This type of graph can convey a great deal of informaƟon without 
the potenƟal loss of informaƟon or distorƟon encountered in a histogram. The main drawback of a 
unidimensional scaƩerplot is that it is effecƟvely limited to small data sets. With large numbers of 
observaƟons, there is a drawback of overploƫng. This makes it difficult to discern individual 
observaƟons and concentraƟons of data points within the overall distribuƟon. There are two general 
and mutually supporƟve strategies for minimizing the effects of overploƫng. First, it is important to 
select a ploƫng symbol that allows readers to detect overploƩed points. The relaƟvely large open 
circles are effecƟve for this purpose. Small and or solid points would coalesce into incomprehensible 
blobs within the display. Similarly, if the ploƫng symbols had straight sides (e.g. squares), then it would 
be more difficult to separate them visually into individual data points when they overlap within the 
display. The overploƫng can be reduced by displacing the points somewhat in the direcƟon 
perpendicular to the scale line of the variable. This Process is called “jiƩering”. In a “jiƩered” 
unidimensional scaƩerplot, it is important to keep the range of the random variaƟon small relaƟve to 
the variaƟon in the substanƟve variable.  [13] 

Dot Plots 

A dot plot (Figure 3) which also called index plot is a useful display method whenever data values are 
associated with idenƟfying informaƟon such as a label or an index number. Dot plots are useful in a 
variety of situaƟons and there are several different versions of the basic display. One axis of the dot 
plot, usually the horizontal, represents the scale for the variable under invesƟgaƟon. The other axis, 
usually the verƟcal, contains rows that provide a label or an index for each data value. ObservaƟons 
are sorted according to the values of the variable under invesƟgaƟon and then ploƩed as points at the 
appropriate scale locaƟon within each row. In this manner, the dot plot idenƟfies both the specific data 
points and the numeric values that are associated with them. The dot plot is effecƟvely the same as a 
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transposed quanƟle plot or Q-Q- Plot and the shape of the point array can be interpreted in a manner 
similar to those displays. [13]     

 

Figure 3 shows a bimodal distribuƟon (corresponding to the nearly verƟcal secƟons in the point 
array) and the asymmetric tails (in the long and fairly steep point array in the lower leŌ side of 
the graph and the shorter, shallower string of points near the upper right- hand corner). The 
dot plot succinctly provides a great deal of informaƟon about the distribuƟon and the specific 
observaƟons within the data like outlier. In the case of a unimodal distribuƟon the graph would 
show a plot shaped like a "transposed S." with a more “linear part” in the middle. Note: The 
modality of a distribuƟon concerns how many peaks. A distribuƟon with a single peak - that is, 
one value with a high frequency - is a unimodal distribuƟon. MulƟmodal distribuƟons have two 
or more peaks and when there are exactly two peaks, the distribuƟon is bimodal. [33]  

The dot plot is a graphical processing task that human observers can carry out quite accurately. By 
contrast, pie charts require analysts to make comparisons between the angles, arcs and areas that 
define the sizes of the pie wedges. Like dot plots, bar charts also require judgments about locaƟons 
along the scale. In summary, dot plots are excellent graphical displays for labelled data. They contain a 
great deal of informaƟon, concerning distribuƟon, outliers, are easy to interpret and overcome a 
number of the problems associated with other kinds of displays. For these reasons, they should be 
used frequently in empirical research. [31]  

Background of the Parametric StaƟsƟcal Methods 

Visual inspecƟon alone cannot always idenƟfy an outlier and can lead to mislabelling an observaƟon 
as an outlier. Because data are used in esƟmaƟon with classical measures (parametric staƟsƟc) such as 
the arithmeƟc mean being highly sensiƟve to outliers, staƟsƟcal methods were developed to 
accommodate outliers and to reduce their impact on the analysis. [30] Parametric staƟsƟcal tests - like 
the later on described outlier test - assume an underlying normal distribuƟon specified by the 
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arithmeƟc mean and the standard deviaƟon and where this assumpƟon is violated, the results of such 
tests will be unreliable due to a loss of staƟsƟcal power. It is therefore necessary to test if such an 
assumpƟon is valid before proceeding to analyse the data.  

- The normal probability plot is a graphical method on the basis of a non- parametric staƟsƟc 
approach for assessing whether or not a data set is approximately normally distributed. 

- The probability plot correlaƟon coefficient (PPCC) is a test staƟsƟc of the linearity of the 
relaƟonship between two variables for assessing whether or not a data set is approximately 
normally distributed. [18] 

Against the background of the importance of the parametric staƟsƟcal methods, like the applicaƟon of 
the Zscore and parametric tests, the fundamental central limit theorem has to be de described briefly.  

Central Limit Theorem 

In the case of an infinite large size of numbers of samples, the normal distribuƟon respecƟvely the 
Gauss- distribuƟon represents the central limit theorem [42, 1, 43] developed by Pierre-Simon 
(Marquis de) Laplace (1778) (1749 -1827) [44] The law of large numbers is a natural law [45] and 
fundamental for the inducƟve staƟsƟcs. [43] The law of large numbers represents formally the 
convergence of the means. [46] It is necessary to underscore that probability density funcƟons in 
general are mathemaƟcal models which embodies a set of staƟsƟcal assumpƟons concerning the 
generaƟon of sample data and similar data from a larger populaƟon, consequenƟal density funcƟons 
are approximaƟon funcƟons to describe the reality.  Also, valid here is the principle: A mathemaƟcal 
model is only as strong as its underlying assumpƟons. [1, 47, 43, 45, 48] The use of the central limit 
theorem makes it possible to describe the arithmeƟc mean, the standard deviaƟon the confidence 
interval of the theoreƟcal distribuƟon and resulƟng from this the probability of the existence of 
outliers. 

ConƟnuous Probability Density FuncƟon 

The law of large numbers says, if it is taken more samples from any populaƟon (formular 1), then the 
mean of the sampling distribuƟon (formular 2), tends to get  

μ =
1

N
෍ x୧

୒

୩ୀଵ

 

Formular 1 

xത =
1

n
෍ x୧

୬

୩ୀଵ

 

Formular 2 
closer to the true population mean, the population standard deviation (s) (Formular 3) (Whereby  
represents also the inflexion point of the function of Gauss- distribution on the x- axis [42, 49]) and 
sample standard deviation () (Formular 4), consequently closer to reality. [4] 

𝜎 = ඨ
∑(x − μ)ଶ

N
 

Formular 3 

s = ඨ
∑(x − xത)ଶ

n − 1
 

Formular 4 
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Both results of formular 3 () and formular 4 (s) represent the variability of the random variable (x) 

around the expected value (µ, xത). [49] 
 
Confidence Interval and Probability of Outliers 
 
The determination of the confidence interval is based on the arithmetic mean 𝑥̅ of the sample to 
estimate the arithmetic mean of population (µ) and the standard variation (s) to estimate the 
population standard deviation (). The influence of the sample size and the knowledge of the 
distribution are also essential in these analyses. [43] The confidence interval is an interval estimation. 
[42, 1, 50, 47, 43, 49] The confidence interval contains the most plausible values of the unknown 
parameter of interest. [47] This interval estimate for the unknown population parameters depends on: 
the desired confidence level, information that is known about the distribution, the sample and its size.  
Concerning to the approximate standard normal distribution with a known population standard 
deviation () it is mostly common to define a confidence interval of 95% of the samples which will be 
within a confidence coefficient of Zα = 1.960 which represents a standard deviation 1,96  of the 
population mean μ.   
This confidence interval implies two possibilities: Either the interval contains 95% of the true mean μ 
and samples produced an 𝑥̅ that is within the interval of the true mean μ. The second possibility 
happens for 5% (error) of the samples, because they are outside of the interval. Concerning the 
labelling of outliers, the error represents the existence of outliers. In the context of outlier detection, 
the error will be labelled out. The relationship between the total probability, the confidence interval 
(CI) and the probability of the existence of outliers (out) can be written as follows (one – side interval 
estimation):   

1 = CI + α୭୳୲ 
Formular 5 

In the case of a two - side interval estimation as follows: 

1 = CI +
α୭୳୲ౢ౛౜౪

2
+

α୭୳୲౨౟ౝ౞౪

2
 

Formular 6 

The confidence coefficient Zα is the number of standard deviations where the outlier lies from the 
mean with a certain probability. The most convention in economics, technical- and also most social 
sciences sets confidence levels at either 90 % (Zαout=  1.645, out= 10%), 95% (Zαout=  1.960, out= 
5%) certainty is considered as probable respectively significant [47], 99% (Zαout=  2.576, out= 1%) 
security is considered as significant respectively “very significant” [47] and 99.9 % (Zαout=  3.290, out= 
0.1 %) security is considered as “highly significant.” [42, 1, 50, 47, 43, 49] Like the level of confidence 
the probability of the existence of outliers must be pre- set and not subject to revision as a result of 
the calculations. [51, 1] The difference concerning the probability of the existence of outliers and the 
most often applied significance level  or error = 0.5 is that out ≤ 0.5 and that the value is mainly given 
by the confidence coefficient (Zαout) and not in percent. Next to confidence coefficient Zα, for the 
labelling of outliers, some authors named also a value of a threshold of Zαout respecƟvely of =  2.576 
(Zαout=  2.576, out= 1%). [34] A standard cut- off value for finding outliers is a Zαout of 3, respecƟvely 
 3, the three- sigma rule (Zαout=  3.000, out= 0.27 %). This rule denotes that roughly 1 in 370 
observaƟons will differ by three Ɵmes the standard deviaƟon. [10, 33, 6] Similar to the value which 
represents the term “very significant”, the value of =  3.290 (Zαout=  3.290, out= 0.1 %) can be 
found in the literature to idenƟfy outliers. [29, 32, 34] The author argued that: “The extremeness of a 
standardized score depends on the size of the sample; with a very large number of data (n), a few 
standardized scores in excess of 3.29 are expected.” [32]. 
 
     𝑍ఈ೚ೠ೟భ

=  1.96 = 𝛼௢௨௧ = 5.00% [13, 40] 
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Formular 7 

𝑍ఈ೚ೠ೟మ
=  2.58 = 𝛼௢௨௧ = 1.00% [13, 34, 40] 

 
Formular 8 

𝑍ఈ೚ೠ೟య
=  3.00 = 𝛼௢௨௧ = 0.27%  [6, 10,33] 

 
Formular 9 

𝑍ఈ೚ೠ೟ర
=  3.29 = 𝛼௢௨௧ = 0.10%  [29, 32, 34] 

 
Formular 10 

In order to check whether data points are outliers, they have to be converted to Zscore, which will also 
called “StudenƟzaƟon”. Zscore -analysis is an important and objecƟve way to determine whether a 
suspected outlier is truly a concern. [29] If the populaƟon is assumed to be normal, the 
“StudenƟzaƟon” respecƟvely conversion can be applied. [11] The Zscore can quanƟfy the unusualness 
of an observaƟon. Zscore and Zαout are the number of standard deviaƟons () above and below the 
arithmeƟc mean 𝑥̅ that each value falls. [10] To calculate the Zscore for an observaƟon, it is necessary to 
take the raw measurement (x), subtract each by the arithmeƟc mean (𝑥̅) and divided by the standard 
deviaƟon (S).  

Zୱୡ୭୰ୣ =
x − xത

S
 

Formular 11 

If the absolute value Zscore of a data is greater than the absolute value of the chosen cut- off value Zαout 

the suspicious data can be labelled as a potenƟal outlier.    

The Zscores can mislead with small data sets (n) because the maximum Zscore is limited. The hereaŌer 
quoted equaƟon describes the maximal achievable Zscore as funcƟon of the number of samples 

Zୱୡ୭୰ୣ(୫ୟ୶.) =
(୬ିଵ)

√୬
        

[12]   Formular 12 

Unfortunately, the value of Zscore(max.) is quite limited for small data sets (n). When n ≤ 10 the Zscore(max.) 

cannot exceed  =  3 (Zαout = 3) regardless of the combinaƟon of values. Consequently, no value can 
be detected as an outlier according to the three- sigma rule. [12] Therefore it is possible to name the 
minimum number of data n >10 to apply the three- sigma rule for the labelling of outliers. The presence 
of the outlier influences the Zscore because it inflates the arithmeƟc mean 𝑥̅ and standard deviaƟon S. 
When the Zscores will be calculated without the outlier, the values would be different. If a data set 
contains outliers, Zscores will be biased therefore they appear to be less extreme (i.e., closer to zero). It 
is not appropriate to consider a Zscore as being approximately normally distributed in any cases. The 
Zscore is not saƟsfactory for outlier labelling, especially in small data sets. Although the basic idea of 
using the Zscore is a helpful approximaƟon, they are unsaƟsfactory because the summaries x and  are 
not resistant in respect of outliers. [21] However, if the data do not follow the normal distribuƟon, this 
approach might not be accurate. In general, it is assumed that the number of data exceed 30. Incipient 
with a number greater than 30 is can be assumed that the data are approximately normally distributed 
and the Zscore is a saƟsfactory esƟmaƟon for outlier labelling. [22, 34] When the number of samples get 
fewer than 30, the sampling distribuƟon has a different shape and can be considered suitable e.g. the 
t- distribuƟon.  
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Note: Concerning the seƫng of limit values like the threshold of  (Zαout) and the significance 
in general, it is worth remembering the words of Sir Ronald Aylmer Fisher: 

Fisher acknowledged that the dogmaƟc use of a fixed level of significance was silly: 'no 
scienƟfic worker has a fixed level of significance at which from year to year, and in all 
circumstances, he rejects hypotheses; he rather gives his mind to each parƟcular case in the 
light of his evidence and his ideas' (Fisher, 1956). [34] 

In other cases, robust methods should be used like the esƟmator MAD (the median of the absolute 
deviaƟons about the median) etc. [21, 13]    

Modified Zscore 

This method uses two esƟmators for outlier labelling, the median 𝑥̃ and median absolute deviaƟon 
MAD instead of arithmeƟc mean 𝑥̅ and the classical standard deviaƟon S to resolve the limitaƟon of 
Zscore in which standard deviaƟon S can be affected by extreme observaƟon. [35] 

MAD = median |xi −  x̃ |i = 1,2, … , n 

Formular 13 

Whereat 𝑥̃ is the sample median and MAD being the sample median absolute deviaƟon. The median 
absolute deviaƟon (MAD) is not directly comparable to the classical standard deviaƟon (S). Under the 
condiƟon that the underlying distribuƟon is approximately normal, the MAD can be modified to 
provide approximated standard deviaƟon S. 

MAD ≈
ஔ

ଵ.ସ଼ଷ
≈

ୗ

ଵ.ସ଼ଷ
  

Formular 14 

The approximated standard deviaƟon S on the basis of the MAD is called MADE 

MADE = 1.483 MAD  

[13, 21]  Formular 15 

The modified Zscore is denoted by 𝑀𝑖 and is calculated as follows  

Mi =
|xi −  x̃ |i = 1,2, … , n 

MAD୉
 

Formular 16 

Iglewicz and Hoaglin proposed that the absolute values of Mi greater than 3.5 i.e. |Mi| > 3.5, the 
observaƟon is considered as an outlier. [21, 35] 

Notes:  

1. The MAD and MADE share the disadvantage that they both become zero if more than half of 
the data set are equal, perhaps because of excessive rounding or a large number of zero 
observaƟons. This would, of course, be a problemaƟc data set in any case. 

2. Because of the limitaƟons of MADE, it is someƟmes useful to use the arithmeƟc mean 
absolute deviaƟon instead of the median absolute deviaƟon. Although this is less robust than 
MADE, it does not become zero unless all the values in the data set are idenƟcal. sMAD is a 
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compromise; if MADE is non-zero, sMAD = MADE; if MADE is zero, sMAD is the arithmeƟc mean 
absolute deviaƟon. [13] 

On the basis that MADE approximately represents the standard deviaƟon of the Gaussian- distribuƟon 
 a threshold of |Mi| > 3.5 represents the probability of the existence of one outlier of 0,00012 (0,012 
%) for each side and 0,00022 (0,022 %) of both sides of the Gaussian- distribuƟon. 

Median Absolute DeviaƟon (MADE) Method 

The method MADE is a robust technique that uses median 𝑥෤ and median absolute deviaƟon MAD 
instead of arithmeƟc mean 𝑥̅ and standard deviaƟon S, as they are highly unaffected by extreme 
observaƟons. This technique is defined as follows: 

2MADE Method: 𝑥෤  2MADE    

Formular 17 

3MADE Method: 𝑥෤  3MADE              

Formular 18 

The values that lie outside the interval of 𝑥෤  2MADE or 𝑥෤  3MADE are considered as outliers. [35]  

Q-Q- Plots  

A special example of a scaƩer plot, [13] dot- plot or index- plot [31], is a normal probability plot [13, 
32], someƟmes also called a quanƟle- quanƟle plot “Q- Q- Plot” [13] or “normal – plot”. Whereat the 
Q-Q- plot represents the most common variant. [16] The use includes the idenƟficaƟon of skewness, 
kurtosis, [6, 15, 20] a need for transformaƟons and also the detecƟon of outliers. [6, 15, 32, 34]  

Note: QuarƟles divide a distribuƟon into fourths, percenƟles divide a distribuƟon into one 
hundredth and deciles divide it into tenths. [33] The quanƟles of a distribuƟon are a set of 
summary staƟsƟcs that locate relaƟve posiƟons within the complete ordered array of data 
values. [31, 32]  

A point on the plot corresponds to one of the quanƟles of a distribuƟon ploƩed against the same 
quanƟles of the reference distribuƟon, with which the first will be compared. [14, 31]  

Q-Q- plot is formed by: 

    y- axis: zi- scores of the observaƟon 

    x- axis: zi- score of the inverse cumulaƟve funcƟon (-1) of the reference distribuƟon [16] 

This defines a parametric curve where the parameter is the index of the quanƟle interval. To produce 
a probability plot, the order staƟsƟcs of the observed values or the transformed order staƟsƟcs has to 
be generated. [18] This calculaƟon of the quanƟles (pi) of the observaƟons has to be ploƩed based on 
the ranks. [14, 32] One way of forming approximate normal scores for n data points x1…xn, of the 
uniform order staƟsƟc medians pi [16], is as follows [13]: 

1. Obtain the ranks ri for the data set. [13] 
 

2. The normal probabiliƟes pi, for each data point respecƟvely rank. [13] Different sources quote 
diverse formulars for the approximaƟon, calculaƟon of the quanƟles [16]. The formula used by the 
basic "stats" package in R for that conƟnuity correcƟon [20] is as follows:  
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𝑝௜ =
(𝑟௜ − a)

(n − 1 + 2a)
 

Formular 19 

where ri is the rank of the data, a is set to 0,375 and n the number of values. If the number of value 
n is less than or equal to 10 then a is set to be 0,5 otherwise. [13, 15] Others sources recommend 
the following equaƟon, developed by Blom (1958): 

𝑝௜ =
(𝑟௜ − 0,375)

(𝑛 + 0,25)
 

[14,18,19]   Formular 20 

Most references quote the following formular: 

𝑝௜ =
(𝑟௜ − 0,5)

𝑛
 

          Formular 21 

The last of these ranks ri, in this equaƟon, corresponds to the 100th percenƟle which represents the 
maximum value of the theoreƟcal distribuƟon, which is someƟmes infinite. [14, 20] In this equaƟon, 
the quanƟty 0.5 is subtracted from each ri value in the numerator to avoid extreme quanƟles of 
exactly 0 or 1. The laƩer would cause problems if empirical quanƟles were to be compared against 
quanƟles derived from a theoreƟcal, such as the normal.  This adjustment has no effect on the shape 
of any graphical displays that use the quanƟles. [31] 

3. The uniform order staƟsƟc medians pi and the percent point funcƟon [16], which is also called the 
inverse of the cumulaƟve distribuƟon funcƟon (-1) and “Probit” [17], is needed to generate the x- 
values of the Q-Q- plot. The -1 – funcƟon generates the probability, based on the calculaƟon of the 
uniform order staƟsƟc medians, the pi - values. [16] -1 gives the Zi-score associated with probability 
pi values between 0 ≤ pi ≤ 1 onto a standard normal distribuƟon. [17] If one or both of the axis in a 
Q- Q- plot is based on a theoreƟcal distribuƟon with a conƟnuous cumulaƟve distribuƟon funcƟon 
(CDF), all quanƟles are uniquely defined and the Zi- score of the normal distribuƟon can be obtained 
by 1. [14]    

z୧ିୱୡ୭୰ୣ = Φିଵ, f(p୧) 

Formular 22 

Whereat 1 is for the Gaussian- distribuƟon as funcƟon of the probabiliƟes pi. [14] The Q-Q- plot 
based on the presentaƟon of the Zi-scores grounded on  -1 as x- values and the Zi-scores of the 
measurement as y- values. 

The diagram below shows the different Zi-scores for -1, for the Gaussian- distribuƟon and the Zi-scores of 
the measurement calculated based on the procedure of “StudenƟzaƟon” of measurements [11]. Both 
scores a pictured as funcƟon of the probabiliƟes pi based on the quanƟles.  
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Figure 4 displays a Q-Q- Plot, whereby the orange dots represent the inverted cumulaƟve 
distribuƟon funcƟon (-1) for the Gaussian- distribuƟon and the blue dots represent the Zi-scores 

of exemplary measurements, as funcƟon of the probability pi based on the quanƟles. Whereat 
the y- axis represents the Zi-scores of the measurement and the Zi-scores of the inverted 
cumulaƟve distribuƟon funcƟon (-1) for the Gaussian- distribuƟon.  

 

Figure 5 shows the ploƫng Zscore against xi- values gives the Q-Q- plot. [13] Whereat the values 
of the x- axis in contrast to first graph are not standardised. 

The points ploƩed in a Q- Q- plot are always increasing when viewed from leŌ to right. [20, 32] If the 
two distribuƟons being compared are idenƟcal, the Q–Q plot follows the 45°- line (y = x) the angle 
bisector [20]. If the two distribuƟons agree aŌer linearly transforming the values in one of the 
distribuƟons, then the Q- Q- plot follows some line, but not necessarily the line y = x. If the general 
trend of the Q- Q- plot is flaƩer than the line y = x, the distribuƟon ploƩed on the horizontal axis is 
more dispersed than the distribuƟon ploƩed on the verƟcal axis. Conversely, if the general trend of the 
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Q- Q- plot is steeper than the line y = x, the distribuƟon ploƩed on the verƟcal axis is more dispersed 
than the distribuƟon ploƩed on the horizontal axis. Q- Q- plots are oŌen arced, or "S" shaped, indicaƟng 
that one of the distribuƟons is more skewed than the other, or that one of the distribuƟons has heavier 
tails than the other. [14] DeviaƟons from the line (usually at either end) indicate some deviaƟon from 
normality. If the data points fall on or close to a straight line, the data are close to be normally 
distributed. This guide line is shown as the dashed line in Figure 5. ln this case, most of the points fall 
fairly close to the line; only the slight curvature in the data suggests any non- normality. [13] If normality 
is present, the residuals are normally and independently distributed around the 45° - line (y=x). [32]  

Box- Plot and InterquarƟle Range 

A Q-Q- plot shows all of the data. SomeƟmes, however, this degree of detail is not necessary in a 
graphical display. [31] A Box- Plot - oŌen also called a 'box- and- whisker' plot or "box- and- whisker 
diagram" - is a useful method of summarising data sets, parƟcularly where the data fall into different 
categorical grouping variable and conƟnuous variable. [13, 28] Box- Plots are based on the quanƟles of 
a distribuƟon. Analysts frequently use them during data analysis because the displayed data set shows 
the "most important" quanƟles respecƟvely the characterising data. The Box- Plot represents, the 
central tendency, [31] dispersion, skewness, and spread, around the median 𝑥෤ as well as highlighƟng 
outliers. The interquarƟle range (IQR) - the hight of the box - is a measure of the spread and dispersion 
of the data. [28, 29, 30, 31, 32, 33, 34] The symmetry of the distribuƟon is indicated by the relaƟve 
distances from the median line to the upper and lower edges of the box and also by the relaƟve sizes 
of the two whiskers. The box shows the central region of the distribuƟon. [31] The used quarƟles and 
interquarƟle range (IQR) have the advantages to be also relaƟvely robust compared to other 
quanƟtaƟve methods concerning the detecƟng of outliers. [9, 31] The Box- Plot displays outliers using 
asterisks that fall outside the subsequent described “whiskers”. These graphs are oŌen precursors to 
hypothesis tests. [28] The different features can represent different staƟsƟcs, but the most common 
choice is the five- number summary as follows [13, 28]: 

1.  The minimum value of the data set. [26, 28, 31] 

2.  The first or lower quarƟle (Q1) which represents 25th percenƟle of the data set. [26,28, 29, 30, 
31, 34]  

3. The central solid line inside of the box is the median 𝑥෤ [13, 21] which represents 50th percenƟle 
of the data set. Whereat the median is also called the second quarƟle. [34] The median is a 
measure of central tendency in staƟsƟcs. [26, 28, 29, 30, 31, 33, 34]. 

4.  The third or upper quarƟle (Q3) which represents 75th percenƟle of the data set. [26, 28, 29, 
30, 31] 

5.  The maximum value of the data set. [26, 28, 31] 

These five values highlight the data distribuƟon shape, spread, and central tendency. All these 
measures are nonparametric and do not make assumpƟons about the data distribuƟon. This aspect 
makes a box and whisker plots especially suitable for the early stages of analysis. This graph works by 
breaking the data set down into predefined quarƟles. When the sample size is too small, the quarƟle 
esƟmates might not be meaningful. Consequently, these plots work best when at least 20 data points 
per group are available. [28] The boƩom and top of the rectangular “box” show the lower and upper 
quarƟles, respecƟvely. The box shows the range of the central 50% of the data set. The length of the 
box is the interquarƟle range (IQR), the indicator of the dispersion of the data. [13] It represents the 
range of values between the third quarƟle (75%) and the first quarƟle (25%) (IQR= Q3 – Q1= Q0.75 – 
Q0.25), that equates 50%. [13, 9, 21, 26, 28, 29, 31, 33] PercenƟles respecƟvely quarƟles indicate the 



18 
 

percentage of data that fall below a parƟcular value and it describes the relaƟve standing of a value. 
[28] One formula for finding first quarƟle (Q1) and third (Q3) is quoted below. Whereat i is the index of 
a data value and can be calculated on the bases of number of date n.  

𝑖 =
(⌊(𝑛 + 1)/2⌋) + 1

2
 

Formular 23 

To get the lower quarƟle, Q1, with an ascending counƟng of i from the top of the list. The posiƟon i 
can be calculated as follows [21] 

𝑛 𝑜𝑑𝑑 ∶  
𝑥(⌊௜⌋) + 𝑥(⌊௜ାଵ⌋)

2
 

Formular 24 

𝑛 𝑒𝑣𝑒𝑛: 𝑥(⌊௜⌋) 

Formular 25 

To get the upper quarƟle, Q3, with an ascending counƟng of i from the boƩom of the list. The posiƟon 
i can be calculated as follows [21]. 

𝑖 =
(⌊(𝑛 + 1)/2⌋) + 1

2
 

Formular 23 

When data are arranged in ascending order, the median 𝑥෤ is a number that measures the "center" of 
the data set it represents the 50th percenƟle and the central solid line inside of the box. For symmetrical 
distribuƟon, the arithmeƟc mean 𝑥 ഥ  and median 𝑥෤ have the same expected value. [13] The median 𝑥෤ 
as the "middle value," but it does not actually have to be one of the observed values. It is a number 
that separates ordered data into halves. If n is an odd number - similar to the calculaƟon of Q1 and Q3 
- the median is the middle value of the ordered data. If n is an even number, the median is equal to the 
two middle values added together and divided by two aŌer the data has been ordered. [1,13] 

𝑛 𝑜𝑑𝑑 ∶  𝑥(௡ାଵ)/ଶ 

Formular 26 

𝑛 𝑒𝑣𝑒𝑛: 
𝑥௡/ଶ + 𝑥(௡ାଶ)/ଶ

2
 

           Formular 27 

The lines extending upwards and downwards from each box - the “whiskers”- are drawn from the end 
of the box to the last data point within an adjustment factor k= 1.5, which represents 1.5 Ɵmes the 
interquarƟle range IQR of the box. [13, 31]. In those cases, the whiskers are not extending the minimum 
and maximum values, these data are considered and marked as outlier values [26, 28, 30, 31]. The 
adjustment factor k= 1.5 is used to calculate boundaries for what consƟtutes mild outliers and in the 
case of a k= 3.0 for extreme outliers. [25, 26, 21, 29, 31]  

lower inner fence: Q0.25 – 1.5 IQR 

Formular 28 
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upper inner fence: Q0.75 + 1.5 IQR 

Formular 29 

The k= 3.0 rule is quite conservaƟve, implying that far out values can be comfortably declared as 
outliers when the data are assumed to come from random normal samples.  

lower outer fence: Q0.25 – 3.0 IQR 

Formular 30 

upper outer fence: Q0.75 + 3.0 IQR  

Formular 31 

ObservaƟons flagged as outside require further study to determine their causes.[21] The number that 
accompanies an outlier data point is known as the case idenƟficaƟon number. [29] The k= 1.5 and k= 
3.0 rule should not be used alone to declare outside observaƟons as defecƟve. [21] The lines at the 
end of the “whiskers” are oŌen terminated “fences” with a horizontal line. [13] Each whisker contains 
24.651% of the distribuƟon. [28] Individual observaƟons outside the “fences” are drawn as separate 
points on the plot, these observaƟons are outliers. [13, 21]. These fences are "imaginary values" that 
usually do not occur within the empirical data. They are only used to obtain the upper and lower 
"adjacent values". [31] Box plots display asterisks on the graph to indicate when data sets contain 
outliers. [6, 9] For a normal distribuƟon, observaƟons outside the “fences” are expected about 0.7 % 
in the case of k= 1.5, so individual points outside the fences are generally considered to be outliers [13] 
or mild outliers [33]. Mild outliers are shown with circles. [33] ObservaƟons outside the “fences” are 
expected about 0.002 % in the case of k= 3.0, so individual points outside the fences are generally 
considered to be extreme outliers. [33] Cases that are extreme outliers are shown with asterisks. [33] 
Even when data are not normally distributed, a box- plot can be used because it depends on the median 
and not the arithmeƟc mean of the data. [30] It is important to idenƟfy unusual and problemaƟc 
aspects of the data. At the very least, the presence of outside values should lead the analyst to inspect 
these observaƟons more closely. The only real drawback of a box- plot is that it is fairly insensiƟve to 
mulƟple modes within the data. But beyond this limitaƟon, the box- plot crams a great deal of 
informaƟon into a concise and easily understood visual display. Because of this, it probably is the 
second most frequently used graphical method for data, behind only the histogram in popularity [31] 

 

Figure 6 displays a Box plot of thiamphenicol data by day. [13] 
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An advantage of the boxplot, in comparison to the histogram, is that idenƟficaƟon of outliers is based 
on staƟsƟcal methods rather than subjecƟve ‘‘eyeballing.’’ [29]  

StaƟsƟcal Tests to idenƟfy Outliers 

In contrast to the previous described informal methods, the formal methods are test- based 
methodologies that usually require a staƟsƟcal test to test a hypothesis. [35] Hypothesis tesƟng is a 
staƟsƟcal analysis that uses sample data to assess two mutually exclusive theories about the properƟes 
of a populaƟon. StaƟsƟcians call these theories the null hypothesis and the alternaƟve hypothesis. A 
hypothesis test assesses a sample staƟsƟc and factors in an esƟmate of the sample error to determine 
which hypothesis the data support. [9] This paper deals with tests on the basis of the Gaussian- 
distribuƟon. Therefore, a formal method to examinaƟon whether the distribuƟon is normal will be 
described.  

Preliminary ConsideraƟons 

Before describing individual tests, it is useful to consider what acƟon should be taken on the basis of 
outlier tests. [9] A posiƟve outcome from an outlier test is best considered as a signal to invesƟgate the 
cause; usually, outliers should not be removed from the data set solely because of the result of a 
staƟsƟcal test. However, experience suggests that human or other error is among the most common 
causes of extreme outliers, as described. This experience has given rise to fairly widely used guidelines 
for acƟng on outlier tests on analyƟcal data, based on the outlier tesƟng and inspecƟon procedure 
included in ISO 5725 Part 2 for processing interlaboratory data. The main features are:  

1. Test at the 95% and the 99% confidence level. [13, 40] 

2. All outliers should be invesƟgated and any errors corrected. 

3. Outliers significant at the 99% level may be rejected unless there is a technical reason to retain 
them. 

4. Outliers significant only at the 95 % level should be rejected only if there is an addiƟonal, 
technical reason to do so. 

5. Successive tesƟng and rejecƟon are permissible, but not to the extent of rejecƟng a large 
proporƟon of the data. 

This procedure leads to results which are not seriously biased by rejecƟon of chance extreme values, 
but are relaƟvely insensiƟve to outliers at the frequency commonly encountered in measurement 
work. Note, that this objecƟve can be aƩained without outlier tesƟng by using robust staƟsƟcs where 
appropriate. It is important to remember that an outlier is only “outlying” in relaƟon to some prior 
expectaƟon. If the data were e.g. Poisson distributed, many valid high values might be incorrectly 
rejected because they appear inconsistent with a normal distribuƟon. It is also crucial to consider 
whether outlying values might represent genuine features of the populaƟon. It follows that outlier 
tesƟng needs careful consideraƟon where the populaƟon characterisƟcs are unknown or, worse, 
known to be nonnormal.  The most important role of outlier tesƟng is to provide objecƟve criteria for 
taking invesƟgaƟve or correcƟve acƟon. Outlier tests are also used in some circumstances to provide a 
degree of robustness. [13]  

The Probability Plot CorrelaƟon Coefficient Test  

The probability plot correlaƟon coefficient (PPCC) is used as a test staƟsƟc of Gaussian- distribuƟon. 
This methodology is a test staƟsƟc on the basis of the linearity of the relaƟonship between two 
variables. The null hypothesis for the PPCC- test is that the data are normally distributed with the PPCC- 
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test staƟsƟc the correlaƟon coefficient r. The PPCC defined as the product moment correlaƟon 
coefficient between ordered observaƟon xi and the yi. [18, 39] 

𝑃𝑃𝐶𝐶(𝑥, 𝑦) = 𝑟(𝑥, 𝑦) =
∑ (𝑥௜ − 𝑥̅)௡

௜ୀଵ

ඥ∑ (𝑥௜ − 𝑥̅)ଶ ∑ (𝑦௜ − 𝑦ത)ଶ௡
௜ୀଵ

௡
௜ୀଵ

 

Formular 32 

Where PPCC = 1 the data are perfectly normal distributed, while PPCC = 0 indicates no correlaƟon and 
following on that no normal distribuƟon. The PPCC is compared to a criƟcal value cv for a specified 
level of significance α and sample size n. If the PPCC is less than the criƟcal value (cv), the null 
hypothesis that the data is normal distributed can be rejected. StaƟsƟcal tables typically give criƟcal 
values (cv); but approximated values as funcƟon of n and a significance level of = 0.05 are given by 
the formular menƟoned below:  

𝑐𝑣(𝑛, ∝ = 0,05) ≈ 1,0063 −
0,1288

√𝑛
−

0,6118

𝑛
+

1,3505

𝑛ଶ
  

[18] Formular 33 

The PPCC- test provides in conjuncƟon with the associated probability plot, a quanƟtaƟve and graphical 
representaƟon of goodness- to- fit. The advantages of the PPCC- test is that the test staƟsƟc is 
conceptually easy to understand. It combines two fundamentally simple concepts: the probability plot 
and the correlaƟon coefficient. [39] Where the data does not fit a theoreƟcal distribuƟon, 
nonparametric staƟsƟcal tests should be used. Nonparametric tests require fewer assumpƟons about 
the data and as they do not rely on the underlying distribuƟon they are oŌen referred to as distribuƟon- 
free. Nonparametric tests can be applied to all distribuƟons. 

Generalized Extreme StudenƟzed Deviate Test for Outliers 

Many outlier tests exist, this essay is focused on the Generalized Extreme StudenƟzed Deviate Test 
(ESD- Test). The generalized ESD- test [36] is a generalizaƟon of Grubbs-test. [37] The ESD- test can be 
used to detect one or more outliers in a data set that follows an approximately normal distribuƟon. 
[36, 30] Manoj and Kannan compared different methods for detecƟng outliers and found that 
generalized ESD- test is beƩer than Grubbs’ and Dixons’ tests. [38] The primary limitaƟon of many tests 
is that the suspected number of outliers, k, must be specified exactly. If k is not specified correctly, this 
can distort the conclusions of these tests. On the other hand, the generalized ESD test only requires 
that an upper bound for the suspected number of outliers be specified. Given the upper bound of 
outliers r, the generalized ESD- test essenƟally performs r separate tests: a test for one outlier, a test 
for two outliers, and so on up to r outliers. 

The generalized ESD- test is defined for the hypothesis: 

Null hypothesis; H0:   There are no outliers in the data set 

AlternaƟve Hypothesis; H1:  There are up to r outliers in the data set 

If 𝑅௜ > 𝜆௜, then the null hypothesis is rejected. 

The test staƟsƟc is computed as follows: 

𝑅௜ =
max୧|x୧ − xത|

S
 

Formular 34 
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With 𝑥̅, 𝑥௜ and S denoƟng the arithmeƟc mean the sample and sample standard deviaƟon S, 
respecƟvely. The suspected extreme observaƟon has to be removed and then the test staƟsƟc 
𝑅ଵ, 𝑅ଶ, … , 𝑅௥ has to be recomputed with n - 1 observaƟons. This procedure has to be successively 
repeated unƟl r observaƟons have been removed, respecƟvely tested by the test staƟsƟc 𝜆௜. The 
corresponding criƟcal value for the test staƟsƟcs can calculate as follows: 

𝜆௜ =
(𝑛 − 𝑖)𝑡௣,௡ି௜ିଵ

ට൫𝑛 − 𝑖 − 1 + 𝑡ଶ
௣,௡ି௜ିଵ൯(𝑛 − 𝑖 + 1)

 𝑖 = 1,2, … , 𝑟 

Formular 35 

Where 𝑡௣,௩ is the 100p percentage point from the t- distribuƟon with ν which is the degrees of 
freedom (n-i-1) (Whereupon i represents the removed outlier and n the total number of values) the 
and the significance level α 

𝑝 = 1 −
𝛼

2(𝑛 − 𝑖 + 1)
 

Formular 36 

The number of outliers is determined by finding the largest i such that 𝑅௜ > 𝜆௜ 

SimulaƟon studies by Rosner indicate that this criƟcal value approximaƟon is very accurate for n ≥ 25 
and only reasonably accurate for n ≥ 15. 

Note: That although the generalized ESD- test is essenƟally Grubbs test applied sequenƟally, 
there are a few important disƟncƟons: The generalized ESD- test makes appropriate 
adjustments for the criƟcal values based on the number of outliers being tested for that the 
sequenƟal applicaƟon of Grubbs test does not. Trying to use Grubbs test sequenƟally could 
stop at the wrong iteraƟon and declare no outliers. [35, 36] 

To improve the robustness of the generalized ESD -test a modificaƟon of the original version was tested. 
The arithmeƟc mean 𝑥̅ was replaced by the median 𝑥෤ and the result showed an increased efficacy of 
the outlier detecƟon observaƟon. The test staƟsƟc is computed as follows: 

𝑅௜ =
𝑚𝑎𝑥௜|𝑥௜ − 𝑥෤|

𝑆
 

Formular 37 

With 𝑥෤, 𝑥௜ and S denoƟng the median the sample and sample standard deviaƟon, respecƟvely. 
SimulaƟons have illustrated that the modified version of the test, performance is robust compared to 
the classical generalized ESD -test. [38]  

Challenges of Using Outlier Hypothesis Tests 

When performing an outlier test, the analyst needs to choose a procedure based on the number of 
outliers or specify the number of outliers. Other methods, such as the Tietjen- Moore Test, require the 
analysing person to specify the number of outliers. There are two problems that can occur when the 
analyst specifies the incorrect number in a data set.  A kind of masking occurs when too few outliers 
specified. The addiƟonal outliers that exist can affect the test so that it detects no outliers. Conversely, 
a kind of swamping occurs when too many outliers are specified. In this case, the test idenƟfies too 
many data points as being outliers. Because of these problems, it is necessary to stay categorical criƟcal 
in the applicaƟon of outlier tests.  
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Philosophy about Finding Outliers 

The philosophy based on the use of the in- depth knowledge about all the variables when analysing 
data. Part of this knowledge is knowing what values are typical, unusual, and impossible. When the 
analyst has an in- depth knowledge, it is oŌen best to use the more straighƞorward, visual methods. 
At a glance, data points that are potenƟal outliers will pop out under a knowledgeable gaze of the 
analyst. Consequently, the use of boxplots, histograms, and old- fashioned data sorƟng should be the 
first step. These simple tools provide oŌen enough informaƟon to find unusual data points for further 
invesƟgaƟon. [9] 

Note: The "Anscombe’s quartet" as an example for the superiority of visual methods:  

Anscombe's quartet comprises four data sets that have nearly idenƟcal simple descripƟve 
staƟsƟcs, yet have very different distribuƟons and appear very different when graphed. Each 
dataset consists of eleven (x, y) points. They were constructed in 1973 by the staƟsƟcian Francis 
Anscombe to demonstrate both the importance of graphing data when analysing it, and the 
effect of outliers and other influenƟal observaƟons on staƟsƟcal properƟes. He described the 
arƟcle as being intended to counter the impression among staƟsƟcians that "numerical 
calculaƟons are exact, but graphs are rough" [41] 

It can be criƟcal to use the Zscore and hypothesis tests to find outliers because of their various 
complicaƟons. Using outlier tests can be challenging because they usually, assume the data follow the 
normal distribuƟon or like the ESD- test the t-distribuƟon. AddiƟonally, the existence of outliers makes 
the Zscore less extreme.  

These methods for idenƟfying outliers are sensiƟve to the presence of outliers. Fortunately, as long as 
researchers use a simple way to display unusual values, a knowledgeable analyst is likely to know which 
values need further invesƟgaƟon. 

“In my view, the formal staƟsƟcal tests and calculaƟons are overkill because they can't definiƟvely 
idenƟfy outliers.” Jim Frost [9] 

UlƟmately, analysts must invesƟgate unusual values and use their experƟse to determine whether they 
are legiƟmate data points. StaƟsƟcal procedures do not know the subject maƩer or the data collecƟon 
process and cannot make the final determinaƟon. The analyst should not include or exclude an 
observaƟon using only the results of a hypothesis test or staƟsƟcal measure. The analyst should not 
necessarily remove one or all outliers. [9] Random variaƟon generates occasional extreme values by 
chance; these are part of the valid data and should generally be included in any calculaƟons. [13] 
Outliers can be very informaƟve about the subject area and data collecƟon process. It is vital to 
understand how outliers occur and whether they might happen again as a normal part of the process 
or study area. 

StaƟsƟcal Analyses on the basis of alternaƟve Methods    

What has to be done when the outliner cannot legiƟmately remove, but they violate the assumpƟons 
of the applied staƟsƟcal analysis? The analyst wants to include them but do not want them to distort 
the results. There are various staƟsƟcal analyses applicable for that problem. These staƟsƟcal analyses 
are the nonparametric hypothesis tests which are robust to outliers. For these alternaƟves to the more 
common parametric tests, outliers will not necessarily violate their assumpƟons or distort their results. 
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